李锋镝的博客 - LiFengdi.Com

  • 首页
  • 时间轴
  • 留言
  • 左邻右舍
  • 我的日常
  • 关于我
青衿之志 履践致远
霁月光风 不萦于怀
  1. 首页
  2. 原创
  3. 面试
  4. 正文

Redis面试总结——持久化、线程模型、内存淘汰机制等

2020年2月25日 14102点热度 3人点赞 0条评论

Redis 持久化机制

Redis是一个支持持久化的内存数据库,通过持久化机制把内存中的数据同步到硬盘文件来保证数据持久化。当Redis重启后通过把硬盘文件重新加载到内存,就能达到恢复数据的目的。

实现:单独创建fork()一个子进程,将当前父进程的数据库数据复制到子进程的内存中,然后由子进程写入到临时文件中,持久化的过程结束了,再用这个临时文件替换上次的快照文件,然后子进程退出,内存释放。

RDB是Redis默认的持久化方式。按照一定的时间周期策略把内存的数据以快照的形式保存到硬盘的二进制文件。即Snapshot快照存储,对应产生的数据文件为dump.rdb,通过配置文件中的save参数来定义快照的周期。( 快照可以是其所表示的数据的一个副本,也可以是数据的一个复制品。)数据恢复的时候速度比AOF快。

AOF:Redis会将每一个收到的写命令都通过Write函数追加到文件最后,类似于MySQL的binlog。当Redis重启是会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。
当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。AOF 的默认策略为每秒钟 fsync 一次。(总是fsync 、从不fsync)

bgsave(RDB)做镜像全量持久化,aof做增量持久化。

因为bgsave(RDB)会耗费较长时间,达不到实时,在停机的时候会导致大量丢失数据,所以需要aof来配合使用。

如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1秒1次,这个时候最多会丢失1s的数据。

Redis会定期做aof重写,压缩aof文件日志大小。

在redis实例重启时,优先使用aof来恢复内存的状态,如果没有aof日志,就会使用rdb文件来恢复。

RDB和AOF两者怎么选择?

全都要,单独用RDB你会丢失很多数据,单独用AOF,数据恢复没RDB来的快,出现问题的时候第一时间用RDB恢复,然后AOF做数据补全,冷备热备一起上,才是互联网时代一个高健壮性系统的王道。

redis相比memcached有哪些优势?

  1. memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
  2. redis的速度比memcached快很多
  3. redis可以持久化其数据

Memcache与Redis的区别都有哪些?

  1. 存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,redis可以持久化其数据
  2. 数据支持类型 memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 ,提供list,set,zset,hash等数据结构的存储
  3. 使用底层模型不同 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。 Redis直接自己构建了VM机制,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
  4. value 值大小不同:Redis 最大可以达到 1gb;memcache 只有 1mb。
  5. redis的速度比memcached快很多
  6. Redis支持数据的备份,即master-slave模式的数据备份。

单线程的redis为什么这么快

  1. 纯内存操作
  2. 单线程操作,避免了频繁的上下文切换
  3. 采用了非阻塞I/O多路复用机制

Redis 为什么是单线程的

官方FAQ表示,因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)Redis利用队列技术将并发访问变为串行访问

讲解下Redis线程模型

文件事件处理器包括分别是套接字、I/O 多路复用程序、 文件事件分派器(dispatcher)、 以及事件处理器。使用 I/O 多路复用程序来同时监听多个套接字, 并根据套接字目前执行的任务来为套接字关联不同的事件处理器。当被监听的套接字准备好执行连接应答(accept)、读取(read)、写入(write)、关闭(close)等操作时, 与操作相对应的文件事件就会产生,这时文件事件处理器就会调用套接字之前关联好的事件处理器来处理这些事件。I/O多路复用程序负责监听多个套接字, 并向文件事件分派器传送那些产生了事件的套接字。

工作原理:

I/O多路复用程序负责监听多个套接字, 并向文件事件分派器传送那些产生了事件的套接字。
尽管多个文件事件可能会并发地出现, 但 I/O多路复用程序总是会将所有产生事件的套接字都入队到一个队列里面, 然后通过这个队列, 以有序(sequentially)、同步(synchronously)、每次一个套接字的方式向文件事件分派器传送套接字: 当上一个套接字产生的事件被处理完毕之后(该套接字为事件所关联的事件处理器执行完毕), I/O多路复用程序才会继续向文件事件分派器传送下一个套接字。如果一个套接字又可读又可写的话, 那么服务器将先读套接字, 后写套接字。
Redis面试总结——持久化、线程模型、内存淘汰机制等

为什么Redis的操作是原子性的,怎么保证原子性的?

对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。
Redis的操作之所以是原子性的,是因为Redis是单线程的。

Redis本身提供的所有API都是原子操作,Redis中的事务其实是要保证批量操作的原子性。

多个命令在并发中也是原子性的吗?

不一定, 将get和set改成单命令操作,incr。使用Redis的事务,或者使用Redis+Lua==的方式实现.

redis的数据类型,以及每种数据类型的使用场景

  1. String

这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。

  1. hash

这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。

  1. list

使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。本人还用一个场景,很合适—取行情信息。就也是个生产者和消费者的场景。LIST可以很好的完成排队,先进先出的原则。

  1. set

因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。
另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

  1. sorted set

sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。

Redis回收使用的是什么算法?

**LRU算法

redis的过期策略以及内存淘汰机制

redis采用的是定期删除+惰性删除策略。
惰性删除和定期删除详细可参考redis过期键删除策略

为什么不用定时删除策略?

定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.

定期删除+惰性删除是如何工作的呢?

定期删除:redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。

于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了,如果过期了此时就会删除。

惰性删除:放任键过期不管,但是每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键;如果没有过期,就返回该键。

采用定期删除+惰性删除就没其他问题了么?

不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。

在redis.conf中有一行配置

maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)

volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据,新写入操作会报错
ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

假如Redis里面有1亿个key,其中有10万个key是以固定的前缀开头的,如何将这些全部找出来?

使用keys命令可以扫出指定模式的key列表。

但是,如果这个redis正在给线上的业务提供服务,因为redis的单线程的,所以keys命令会导致线程阻塞一段时间,线上服务会停顿,直到命令执行完毕,服务才能恢复。

为了解决这个问题,可以使用scan命令,scan命令可以无阻塞的提取出指定模式的key列表,会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys命令长。

Redis主从之间的数据怎么同步的?

启动一台slave的时候,会发送一个psync命令给master,如果是这个slave第一次连接到master,他会触发一个全量复制。master就会启动一个线程,生成RDB快照,还会把新的写请求都缓存在内存中,RDB文件生成后,master会将这个RDB发送给slave的,slave拿到之后做的第一件事情就是写进本地的磁盘,然后加载进内存,然后master会把内存里面缓存的那些新命名都发给slave。

Redis为啥要用主从这样的架构模式?

单机QPS是有上限的,而且Redis的特性就是必须支撑读高并发的,那你一台机器又读又写,这谁顶得住啊,不当人啊!但是你让这个master机器去写,数据同步给别的slave机器,他们都拿去读,分发掉大量的请求那是不是好很多,而且扩容的时候还可以轻松实现水平扩容。
Redis面试总结——持久化、线程模型、内存淘汰机制等

Redis事务相关的命令有哪几个?

MULTI、EXEC、DISCARD、WATCH

Redis中事务的实现特征:

  1. 在事务中的所有命令都将会被串行化的顺序执行,事务执行期间,Redis不会再为其它客户端的请求提供任何服务,从而保证了事物中的所有命令被原子的执行。
  2. 和关系型数据库中的事务相比,在Redis事务中如果有某一条命令执行失败,其后的命令仍然会被继续执行。
  3. 我们可以通过MULTI命令开启一个事务,有关系型数据库开发经验的人可以将其理解为"BEGIN TRANSACTION"语句。在该语句之后执行的命令都将被视为事务之内的操作,最后我们可以通过执行
    EXEC/DISCARD命令来提交/回滚该事务内的所有操作。这两个Redis命令可被视为等同于关系型数据库中的COMMIT/ROLLBACK语句。
  4. 在事务开启之前,如果客户端与服务器之间出现通讯故障并导致网络断开,其后所有待执行的语句都将不会被服务器执行。然而如果网络中断事件是发生在客户端执行EXEC命令之后,那么该事务中的所有命令都会被服务器执行。
  5. 当使用Append-Only模式时,Redis会通过调用系统函数write将该事务内的所有写操作在本次调用中全部写入磁盘。然而如果在写入的过程中出现系统崩溃,如电源故障导致的宕机,那么此时也许只有部分数据被写入到磁盘,而另外一部分数据却已经丢失。Redis服务器会在重新启动时执行一系列必要的一致性检测,一旦发现类似问题,就会立即退出并给出相应的错误提示。此时,我们就要充分利用Redis工具包中提供的redis-check-aof工具,该工具可以帮助我们定位到数据不一致的错误,并将已经写入的部分数据进行回滚。修复之后我们就可以再次重新启动Redis服务器了。

使用Redis做异步队列

一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。

如果对方追问可不可以不用sleep呢?list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。

如果对方追问能不能生产一次消费多次呢?使用pub/sub主题订阅者模式,可以实现1:N的消息队列。

pub/sub有什么缺点?

在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。redis中pub/sub缺陷

redis如何实现延时队列?

使用有序集合,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。

除非注明,否则均为李锋镝的博客 - LiFengdi.Com原创文章,转载必须以链接形式标明本文链接
本文链接:https://www.lifengdi.com/archives/article/interview/1699
本作品采用 知识共享署名 4.0 国际许可协议 进行许可
标签: Redis 面试
最后更新:2020年2月25日

李锋镝

既然选择了远方,便只顾风雨兼程。

打赏 点赞
下一篇 >
guest
您的姓名(必填)
您的邮箱(必填)
您的站点
guest
您的姓名(必填)
您的邮箱(必填)
您的站点
0 评论
Inline Feedbacks
查看所有评论
支付宝红包

问君能有几多愁,恰似一江春水向东流。

最新 热点 随机
最新 热点 随机
回忆是一条没有尽头的路 这样的日子什么时候才是个头 MySQL 中的 distinct 和 group by 哪个效率更高? 开工啦~ 今晚,回家过年! 图数据库选型:Neo4j、Janus、HugeGraph
看病难~取药难~~阳了...开工啦~RocketMQ的push消费方式实现详解国庆节过的也很累~~MybatisCodeHelperPro激活
ZooKeeper 的选举机制,你了解多少? 阿里巴巴《Java开发手册》下载 看病难~取药难~~ SpringBoot整合Elasticsearch游标查询(scroll) Spring中@NotNull、@NotBlank、@NotEmpty的区别 在微服务中使用领域事件
最近评论
李锋镝 发布于 2 周前(03月10日) 已添加~欢迎回访喔
博客录(boke.lu) 发布于 2 周前(03月10日) 已添加贵站0.0 名称:博客录(boke.lu) 简介:boke.lu · 博客收录展示平台~ 链接...
李锋镝 发布于 3 周前(03月05日) 系统版本是win11吗?
HJQ 发布于 4 周前(02月28日) 同问,注册表都没有楼主说的值。
林羽凡 发布于 1 个月前(02月16日) 开工大吉。
有情链接
  • 志文工作室
  • 临窗旋墨
  • 旧时繁华
  • 城南旧事
  • 强仔博客
  • 林三随笔
  • 徐艺扬的博客
  • 云辰博客
  • 韩小韩博客
  • 知向前端
  • 阿誉的博客
  • 林羽凡
  • 情侣头像
  • 哥斯拉
  • 博客录

COPYRIGHT © 2022 lifengdi.com. ALL RIGHTS RESERVED.

Theme Kratos Made By Seaton Jiang

豫ICP备16004681号-2