什么是线程安全?
线程安全是指保证多线程环境下共享的、可修改的状态的正确性。
线程安全需要保证几个基本特性
- 原子性:相关操作不会中途被其他线程干扰,一般通过同步机制实现。
- 可见性:一个线程修改了某个共享变量,其状态能够立即被其他线程知晓,通常被解释为将线程本地状态反映到主内存上,volatile就是负责保证可见性的。
- 有序性:保证线程内串行语义,避免指令重排。
大部分情况下,为了保证线程安全,就要用到锁,加上锁后,每次只允许一个线程运行这段代码,也就是每个时间只能有一个线程访问共享数据。这样就实现了线程安全。
JAVA中的锁
公平锁/非公平锁
公平锁是指多个线程按照申请锁的顺序来获取锁。
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。
对于ReentrantLock
而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。
对于Synchronized
而言,也是一种非公平锁。由于其并不像ReentrantLock
是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。
可重入锁
可重入锁又名递归锁
,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。说的有点抽象,下面会有一个代码的示例。
对于ReentrantLock
而言, 他的名字就可以看出是一个可重入锁,其名字是Re entrant Lock
重新进入锁。
对于Synchronized
而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。
synchronized void setA() throws Exception{
Thread.sleep(1000);
setB();
}
synchronized void setB() throws Exception{
Thread.sleep(1000);
}
上面的代码就是一个可重入锁的一个特点,如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。
独享锁/共享锁
独享锁是指该锁一次只能被一个线程所持有。
共享锁是指该锁可被多个线程所持有。
对于ReentrantLock
而言,其是独享锁。但是对于Lock
的另一个实现类ReadWriteLock
,其读锁是共享锁,其写锁是独享锁。
读锁的共享锁可保证并发读是非常高效的,读写,写读 ,写写的过程是互斥的。
独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。
对于Synchronized
而言,当然是独享锁。
互斥锁/读写锁
上面讲的独享锁/共享锁
就是一种广义的说法,互斥锁/读写锁
就是具体的实现。
互斥锁在Java中的具体实现就是ReentrantLock
读写锁在Java中的具体实现就是ReadWriteLock
乐观锁/悲观锁
乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。
悲观锁认为对于同一个数据的并发操作,一定是会发生修改的,哪怕没有修改,也会认为修改。因此对于同一个数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁的并发操作一定会出问题。
乐观锁则认为对于同一个数据的并发操作,是不会发生修改的。在更新数据的时候,会采用尝试更新,不断重新的方式更新数据。乐观的认为,不加锁的并发操作是没有事情的。
从上面的描述我们可以看出,悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。
悲观锁在Java中的使用,就是利用各种锁。synchronized
和ReentrantLock
等独占锁就是悲观锁思想的实现。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。
乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法或者版本号机制,CAS算法典型的例子就是原子类,通过CAS自旋实现原子操作的更新。java.util.concurrent.atomic
包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。
分段锁
分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap
而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。
我们以ConcurrentHashMap
(jdk1.6)来说一下分段锁的含义以及设计思想,ConcurrentHashMap
中的分段锁称为Segment
,它即类似于HashMap
的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock
(Segment
继承了ReentrantLock
)。
当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。
但是,在统计size的时候,就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。
分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。
偏向锁/轻量级锁/重量级锁
这三种锁是指锁的状态,并且是针对Synchronized
。在Java5通过引入锁升级的机制来实现高效Synchronized
。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。
偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。
轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。
重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。
自旋锁
在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。
锁优化
锁优化主要从以下几个方面入手:
- 减少锁持有时间
避免给整个方法或者不需要加锁的代码块也加上锁,只给需要加锁的操作加锁,来达到减少锁持有时间的目的。
// 优化前
public synchronized void syncMethod(){
othercode1();
mutextMethod();
othercode2();
}
// 优化后
public void syncMethod2(){
othercode1();
synchronized(this){
mutextMethod();
}
othercode2();
}
- 减小锁的粒度(典型的例子就是
ConcurrentHashMap
) - 使用读写分离锁代替读写锁(
ReadWriteLock
) - 锁分离(读写锁的思想上的延伸,根据不同的功能拆分不同的锁,典型的例子就是
LinkedBlockingQueue
) - 锁粗化
通常情况下,为了保证多线程间的有效并发,会要求每个线程持有锁的时间尽量短,在使用完公共资源后,应该立即释放锁。只有这样,等待在这个锁上的其他线程才能尽早的获得资源执行任务。但是如果对此过度的追求,反而会不利于性能的优化。如下的例子,在同一个循环中不停的请求同一个锁:
for(int i = 0; i < 1000; i++){
synchronized(lock){
}
}
// 优化后
synchronized(lock){
for(int i = 0;i < 1000; i++){
}
}
锁粗化与减少锁持有时间是截然相反的,需要根据实际情况来分析应该使用哪种优化方式。